PTR-MS Mass Spectrometer Detection of Buried Oil ¹Jean-Luc Le Garrec, ^{1,2}J. Brian A. Mitchell, ³Stephane LeFloch and ³Ronan Jezequel Institut de Physique de Rennes, UMR du CNRS n° 6251, Université de Rennes I, Rennes, France ²MERL-Consulting, rennes France ³CEDRE (CEntre de Documentation, de Recherche et d'Expérimentations sur les pollutions accidentelles des eaux), Brest, France # Can we use mass spectrometry to detect buried or submerged oil? - Very powerful analytical tool for molecular identification - High sensitivity - Production of ions - Separation and selection of ions - Detection of ions Figure 3-18 Magnetic Sector Mass Spectrometer (on - axis geometry) #### Conventional Mass Spectrometer #### Ionisation by electron impact # Spectrum of Methanol (CH3OH – Mass 32) #### Octane C₈H₁₈ Masse 114.23 #### Proton-Transfer Mass Spectrometer #### Precursor Ion Formation #### Source Drift region •Ion molecule reactions yield H₃O⁺ $$H_2O^+ + H_2O \rightarrow H_3O^+ + OH$$ But, $$H_2O^+ + O_2 \rightarrow O_2^+ + H_2O$$ ## Why H_3O^+ ? #### Advantages of using H₃O⁺ as a reagent ion - On-line analysis of VOCs - H₃O⁺ does not react with the major components of air. ``` H_3O^+ + N_2 \rightarrow H_3O^+ + O_2 \rightarrow No Reaction H_3O^+ + Ar \rightarrow H_3O^+ + CO_2 \rightarrow ``` ## Proton Affinity | Type of compound | Proton affinity (kcal/mole) | |---|-----------------------------| | Permanent gases Ar, O ₂ , N ₂ , CO ₂ | < 130 | | Alkanes C _n H _{2n+2} | < 167 | | Water H ₂ O | 167 | | >C2-olefins and aromatics | >167 | | Alcohols and ethers | >167 | | Aldehydes and ketones except formaldehyde | >167 | J/mole ### Precursor mass spectrum #### Quantification $$H_3O^+ + R \xrightarrow{k} RH^+ + H_2O$$ $$[RH^+]_t = [H_3O^+]_0 (1-e^{-(k[R]t)})$$ at low [R], $$[RH^+]_t = [H_3O^+]_t (k[R]t)$$ where $k = k_{\text{collisional}}$ can be calculated from theory and $t = \text{drift time of } H_3O^+$ reactant ions (~ 0.1 ms) # PTR-MS Apparatus used at CEDRE laboratory, Brest, France Oil Spill Response Thailand 2019 ## Fuel Signatures ### Beaker Test ## **Funnel Test** Oil Spill Response Thailand 2019 #### Result for beaker test ## Beach Test #### Sand Buried on Beach # Distance from Sample ## Toluene phenomenon during beaker test 21 ## Toluene Phenomenon Expanded Time Scale ### The Canadians! ## The Canadians! #### Mass 97 • Mike Moir – Chevron Oil, San Francisco • $$C_6H_6$$ · H_3O + mass = 97 - Benzene hydronium adduct - (H_2O) . $H_3O^+ + C_6H_6 \rightarrow C_6H_6^+ H_3O^+ + H_2O$ #### Conclusions and Future Work - Possible to detect fresh and weathered oil under 10 inches of sand. - Identification of oil signature - Future Work - More systematic study of detection with blind tests - Oil under ice test –possibilities of detection of oil trapped under ice? - Development of a protocol for detection sampling array - Development of more portable apparatus in collaboration with KACST, Saudi Arabia